Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37514040

RESUMO

We performed molecular dynamics simulations of Reteplase in the presence of different excipients to study the stabilizing mechanisms and to identify the role of excipients during freeze drying. To simulate the freeze-drying process, we divided the process into five distinct steps: (i) protein-excipient formulations at room temperature, (ii) the ice-growth process, (iii)-(iv) the partially solvated and fully dried formulations, and (v) the reconstitution. Furthermore, coarse-grained (CG) simulations were employed to explore the protein-aggregation process in the presence of arginine. By using a coarse-grained representation, we could observe the collective behavior and interactions between protein molecules during the aggregation process. The CG simulations revealed that the presence of arginine prevented intermolecular interactions of the catalytic domain of Reteplase, thus reducing the aggregation propensity. This suggests that arginine played a stabilizing role by interacting with protein-specific regions. From the freeze-drying simulations, we could identify several protein-specific events: (i) collapse of the domain structure, (ii) recovery of the drying-induced damages during reconstitution, and (iii) stabilization of the local aggregation-prone region via direct interactions with excipients. Complementary to the simulations, we employed nanoDSF, size-exclusion chromatography, and CD spectroscopy to investigate the effect of the freeze-drying process on the protein structure and stability.

2.
J Biomol Struct Dyn ; 41(11): 5007-5021, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35612899

RESUMO

We have performed a series of multiple molecular dynamics (MD) simulations of glucagon-like peptide-1 (GLP-1) and acylated GLP-1 analogues in complex with the endogenous receptor (GLP-1R) to obtain a molecular understanding of how fatty acid (FA) chain structure, acylation position on the peptide, and presence of a linker affect the binding. MD simulations were analysed to extract heatmaps of receptor-peptide interaction patterns and to determine the free energy of binding using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach. The extracted free energies from MM-PBSA calculations are in qualitative agreement with experimentally determined potencies. Furthermore, the interaction patterns seen in the receptor-GLP-1 complex simulations resemble previously reported binding interactions validating the simulations. Analysing the receptor-GLP-1 analogue complex simulations, we found that the major differences between the systems stem from FA interactions and positioning of acylation in the peptide. Hydrophobic interactions between the FA chain and a hydrophobic patch on the extracellular domain contribute significantly to the binding affinity. Acylation on Lys26 resulted in noticeably more interactions between the FA chain and the extracellular domain hydrophobic patch than found for acylation on Lys34 and Lys38, respectively. The presence of a charged linker between the peptide and FA chain can potentially stabilise the complex by forming hydrogen bonds to arginine residues in the linker region between the extracellular domain and the transmembrane domain. A molecular understanding of the fatty acid structure and its effect on binding provides important insights into designing acylated agonists for GLP-1R.Communicated by Ramaswamy H. Sarma.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glucagon , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeos/química , Simulação de Dinâmica Molecular , Domínios Proteicos
3.
Comput Struct Biotechnol J ; 20: 1439-1455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386098

RESUMO

Granulocyte-colony stimulating factor (GCSF) is a widely used therapeutic protein to treat neutropenia. GCSF has an increased propensity to aggregate if the pH is increased above 5.0. Although GCSF is very well experimentally characterized, the exact pH-dependent aggregation mechanism of GCSF is still under debate. This study aimed to model the complex pH-dependent aggregation behavior of GCSF using state-of-the-art simulation techniques. The conformational stability of GCSF was investigated by performing metadynamics simulations, while the protein-protein interactions were investigated using coarse-grained (CG) simulations of multiple GCSF monomers. The CG simulations were directly compared with small-angle X-ray (SAXS) data. The metadynamics simulations demonstrated that the orientations of Trp residues in GCSF are dependent on pH. The conformational change of Trp residues is due to the loss of Trp-His interactions at the physiological pH, which in turn may increase protein flexibility. The helical structure of GCSF was not affected by the pH conditions of the simulations. Our CG simulations indicate that at pH 4.0, the colloidal stability may be more important than the conformational stability of GCSF. The electrostatic potential surface and CG simulations suggested that the basic residues are mainly responsible for colloidal stability as deprotonation of these residues causes a reduction of the highly positively charged electrostatic barrier close to the aggregation-prone long loop regions.

4.
Acta Biomater ; 65: 174-184, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29102798

RESUMO

One of the fundamental steps needed to design functional tissues and, ultimately organs is the ability to fabricate thick and densely populated tissue constructs with controlled vasculature and microenvironment. To date, bioprinting methods have been employed to manufacture tissue constructs with open vasculature in a square-lattice geometry, where the majority lacks the ability to be directly perfused. Moreover, it appears to be difficult to fabricate vascular tissue constructs targeting the stiffness of soft tissues such as the liver. Here we present a method for the fabrication of thick (e.g. 1 cm) and densely populated (e.g. 10 million cells·mL-1) tissue constructs with a three-dimensional (3D) four arm branch network and stiffness in the range of soft tissues (1-10 kPa), which can be directly perfused on a fluidic platform for long time periods (>14 days). Specifically, we co-print a 3D four-arm branch using water-soluble Poly(vinyl alcohol) (PVA) as main material and Poly(lactic acid) (PLA) as the support structure. The PLA support structure was selectively removed, and the water soluble PVA structure was used for creating a 3D vascular network within a customized extracellular matrix (ECM) targeting the stiffness of the liver and with encapsulated hepatocellular carcinoma (HepG2) cells. These constructs were directly perfused with medium inducing the proliferation of HepG2 cells and the formation of spheroids. The highest spheroid density was obtained with perfusion, but overall the tissue construct displayed two distinct zones, one of rapid proliferation and one with almost no cell division and high cell death. The created model, therefore, simulate gradients in tissues of necrotic regions in tumors. This versatile method could represent a fundamental step in the fabrication of large functional and complex tissues and finally organs. STATEMENT OF SIGNIFICANCE: Vascularization within hydrogels with mechanical properties in the range of soft tissues remains a challenge. To date, bioprinting have been employed to manufacture tissue constructs with open vasculature in a square-lattice geometry that are most of the time not perfused. This study shows the creation of densely populated tissue constructs with a 3D four arm branch network and stiffness in the range of soft tissues, which can be directly perfused. The cells encapsulated within the construct showed proliferation as a function of the vasculature distance, and the control of the micro-environment induced the encapsulated cells to aggregate in spheroids in specific positions. This method could be used for modeling tumors and for fabricating more complex and densely populated tissue constructs with translational potential.


Assuntos
Materiais Biocompatíveis , Vasos Sanguíneos/crescimento & desenvolvimento , Fígado/irrigação sanguínea , Impressão Tridimensional , Engenharia Tecidual , Bioimpressão , Matriz Extracelular , Células Hep G2 , Humanos , Hidrogéis , Perfusão , Poliésteres , Álcool de Polivinil , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...